Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 54: 110386, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38646196

ABSTRACT

Respiratory data was collected from 20 subjects, with an even sex distribution, in the low-risk clinical unit at the University of Canterbury. Ethical consent for this trial was granted by the University of Canterbury Human Research Ethics Committee (Ref: HREC 2023/30/LR-PS). Respiratory data were collected, for each subject, over three tests consisting of: 1) increasing set PEEP from a starting point of ZEEP using a CPAP machine; 2) test 1 repeated with two simulated apnoea's (breath holds) at each set PEEP; and 3) three forced expiratory manoeuvres at ZEEP. Data were collected using a custom pressure and flow sensor device, ECG, PPG, Garmin HRM Dual heartrate belt, and a Dräeger PulmoVista 500 Electrical Impedance Tomography (EIT) machine. Subject demographic data was also collected prior to the trial, in a questionnaire, with measurement equipment available. These data aim to inform the development of pulmonary mechanics models and titration algorithms.

2.
Comput Methods Programs Biomed ; 244: 107988, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38171168

ABSTRACT

BACKGROUND AND OBJECTIVE: Recruitment maneuvers with subsequent positive-end-expiratory-pressure (PEEP) have proven effective in recruiting lung volume and preventing alveoli collapse. However, determining a safe, effective, and patient-specific PEEP is not standardized, and this more optimal PEEP level evolves with patient condition, requiring personalised monitoring and care approaches to maintain optimal ventilation settings. METHODS: This research examines 3 physiologically relevant basis function sets (exponential, parabolic, cumulative) to enable better prediction of elastance evolution for a virtual patient or digital twin model of MV lung mechanics, including novel elements to model and predict distension elastance. Prediction accuracy and robustness are validated against recruitment maneuver data from 18 volume-controlled ventilation (VCV) patients at 7 different baseline PEEP levels (0 to 12 cmH2O) and 14 pressure-controlled ventilation (PCV) patients at 4 different baseline PEEP levels (6 to 12 cmH2O), yielding 623 and 294 prediction cases, respectively. Predictions were made up to 12 cmH2O of added PEEP ahead, covering 6 × 2 cmH2O PEEP steps. RESULTS: The 3 basis function sets yield median absolute peak inspiratory pressure (PIP) prediction error of 1.63 cmH2O for VCV patients, and median peak inspiratory volume (PIV) prediction error of 0.028 L for PCV patients. The exponential basis function set yields a better trade-off of overall performance across VCV and PCV prediction than parabolic and cumulative basis function sets from other studies. Comparing predicted and clinically measured distension prediction in VCV demonstrated consistent, robust high accuracy with R2 = 0.90-0.95. CONCLUSIONS: The results demonstrate recruitment mechanics are best captured by an exponential basis function across different mechanical ventilation modes, matching physiological expectations, and accurately capture, for the first time, distension mechanics to within 5-10 % accuracy. Enabling the risk of lung injury to be predicted before changing ventilator settings. The overall outcomes significantly extend and more fully validate this digital twin or virtual mechanical ventilation patient model.


Subject(s)
Lung , Respiratory Mechanics , Humans , Respiratory Mechanics/physiology , Respiration, Artificial/methods , Positive-Pressure Respiration/methods , Respiration
3.
Data Brief ; 52: 109903, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38161653

ABSTRACT

The breathing dataset presented is collected from 20 healthy individuals at the University of Canterbury using a device to simulate the pressure and flow profiles of obstructive pulmonary disease. Specifically, the expiratory non-linear resistance, which generates the characteristic expiratory pressure-flow loop lobe seen in obstructive disease. Ethical consent for the trial was granted by the University of Canterbury Human Research Ethics Committee (Ref: HREC 2022/26/LR). Data was collected using an open-source data collection device connected to a Fisher and Paykel Healthcare SleepStyle SPSCAA CPAP. The trial was conducted at CPAP PEEP levels of 4 and 8 cmH2O, as well as at ZEEP (0 cmH2O) with no CPAP attached. The simulation device was a modular device connected to the expiratory pathway, consisting of a free volume diversion and fixed high resistance outlet. Three simulation levels were selected for testing, achieved by changing the size of the elastic free volume. The intended use of this dataset is for the initial validation and development of respiratory pulmonary mechanics models, using data collected from healthy people with simulated disease prior to clinical testing.

4.
Data Brief ; 52: 109874, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38146285

ABSTRACT

Resting breathing data was collected from 80 smokers, vapers, asthmatics, and otherwise healthy people in the low-risk clinical unit at the University of Canterbury. Subjects were asked to breathe normally through a full-face mask connected to a Fisher and Paykel Healthcare SleepStyle SPSCAA CPAP device. PEEP (Positive End-Expiratory Pressure) support was increased from 4 to 12 cmH2O in 0.5 cmH2O increments. Data was also collected during resting breathing at ZEEP (0 cmH2O) before and after the PEEP trial. The trial was conducted under University of Canterbury Human Research Ethics Committee consent (Ref: HREC 2023/04/LR-PS). Data was collected by and Dräeger PulmoVista 500 EIT machine and a custom Venturi-based pressure and flow sensor device connected in series with the CPAP and full-face mask. The outlined dataset includes pressure, flow, volume, dynamic circumference (thoracic and abdominal, and cross-sectional aeration. Subject demographic data was self-reported using a questionnaire given prior to the trial.

SELECTION OF CITATIONS
SEARCH DETAIL
...